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Abstract. The paper describes an algorithm for solving the Stefan problem by the finite element 

method for modeling heat and mass transfer processes in a fluid with a phase transition. 

Modeling of heat and mass transfer is based on the solution of the Navier-Stokes equations for 

an incompressible fluid in the Boussinesq approximation and the heat conduction equation for a 

solid phase. The solution was made according to the explicit-implicit scheme of the matrixless 

finite element method using a moving finite element mesh. The mobility of the grid nodes is due 

to the variable geometry of the solution region due to the motion of the melt-crystal interface. 

The new positions of the nodes of the moving mesh were calculated by the model of elastic 

media, providing the approximate equality of the volumes of the mesh cells. The grid nodes 

belonging to the moving boundary between the melt and the growing crystal moved in 

accordance with Stefan's conditions. The auxiliary systems of algebraic equations for the nodal 

values of the desired functions were solved by the matrixless conjugate gradient method with 

preconditioning by using the diagonal approximation of the stiffness matrix. An example of the 

application of the described finite element implementation of the Stefan problem for modeling 

of process for semiconductor single crystal growth by the Bridgman method taking into account 

the rotations of crystal, crucible and heater-vibrator is given. 

1. Introduction 
This paper presents the results of numerical modeling by the finite element method of convective heat 

and mass transfer during the growth of single crystals by the vertical Bridgman method with a 

submerged heater. Numerical calculations were performed using the implicit matrixless finite element 

method based on the iterative process of conjugate gradients and significantly reducing the requirements 

for RAM and computer speed. The effects of gravity, rotation, crystallization rate and vibration on heat 

and mass transfer in the melt, the geometry of the crystallization front, and the thickness of the boundary 

layers were studied. It is shown that the above effects can be effectively used to control the distribution 

of impurities in crystals grown by the vertical Bridgman method. 
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2. Statement of the problem 

The melt flow is described by the Navier-Stokes equations for an incompressible fluid in the 

Boussinesq approximation: 

0 u   

 0 0 0 0/ ( ) zd dt p g T T        u u e  

0 / ( )V TdT dtc k T       

/ ( )dC dt D C   

where traditional notation is used. The problems were studied under conditions of axial symmetry. 

Therefore, it is convenient to write the boundary conditions in a cylindrical coordinate system zr ,, , 

then wvu ,,  are radial, circumferential and axial velocity projections, CT kk .,  are dynamic viscosity, 

heat conduction and diffusion coefficients,   is the buoyancy coefficient, 0T  is a reference temperature, 

0  is a reference density, g  is the gravity acceleration along z . The state of the growing crystal is 

subject to the following relations: ,0u  ,0w  ,0rv   )(/0 TkdtdTc TV   

The calculation domain is shown in Figure 1 where smR 36.3  - crucible radius, sm1.0  - the 

size of the gap (3), smh 8.0 , SHS  - area of immersed heater (1). CT o

m 937  - melting point 

germanium - concentration of gallium impurity. On solid walls, adhesion conditions are 

specified, CR  - crucible rotation speed (bottom - crystal (5) and vertical crucible walls), 0  - rotation 

speed of the immersed heater (1).  

The boundary conditions were adopted as follows:  

1) on the axis of symmetry: 

  0, 0 : 0, 0, / 0, / 0, / 0r z H u v w r T r C r               

2) on the wall of the crucible: 

          , 0 : 0, 0, 0, / 0, / 0r R z h u v w T r C r             

          , : 0, 0, 0, ( ), / 0CRr R h z H u v w T T z C r           

3) at the crystal boundary: 

    
*: 0 , 0 , 0 ,  / ( , ),  / 0T Rr R u v w k T r q z t C r           

4) based on the crystal: 

  1 10 : 0 , 0 , 0 , ,z u v w T T C C       

5) at the upper boundary: 

  2: / 0 , / 0 , / 0 , / 0 ,z Z u z v z w z T z C С                

6) at the melt-crystal interface ),( trz   Stefan conditions were set: 

  1( , ) : ( ) ( ) (1 ( ) )S L m Lz r t T T T C      

  ( ) ( ) ( ) ( ) 0S L S Lu u w w     

 0( ) ( ) 2S Lv v r      / /n T TS L
u H k T n k T n        

  *( ) (1 ) /n L L
u C k D C n     
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 *( ) ( )S LC k C  

where nu  - rate of propagation of the crystallization front, ),( trz  , H - latent heat of 

crystallization absorbed / released at the front. In the above formulas, the indices S and L note the solid 

and liquid phases, respectively, 1 - coefficient of dependence of the hardening / melting temperature 

on the concentration of impurities in the melt, *k - coefficient of equilibrium distribution (rejection) of 

the impurity. The initial conditions were:  

* *0: 0 , 0 , 0 , ( , ) , ( , )t u v w T T r z C C r z       
* *

0 0 00: ( ,0) , ( , ) ( , )mt r z T r z T C r z    
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a)    b) 

Figure 1. Schematic of Bridgman method with submerged heater (a) and solution domain (b) 

At the crystallization front, the condition of mass transfer of the third kind (8) is set taking into 

account the crystallization rate sW  and with the equilibrium extrusion coefficient of impurity
*k , 

CT kk .,  are dynamic viscosity, heat conduction and diffusion coefficients,   is the buoyancy 

coefficient, 0T  is a reference temperature, 0  is a reference density, g  is the gravity acceleration along. 

The vibrations were specified as a harmonic function of time for movement or speed on a submerged 

vibrator. The task is characterized by the following similarity numbers: Reynolds number associated 

with the crystal growth rate s SRe W R /  ; vibrational Reynolds number vibrRe A R /   , where A is 

the amplitude, 2 f   is circular frequency of translator's vibrations; Prandtl number p TPr c / k  ; 

Grashof number 
3 2 2

0g TRGr /     (or Rayleigh number Ra Gr Pr  ), where T  is the temperature 

range, pc is the heat capacity. 

3. Solution Method 
The solution was made according to the explicit-implicit scheme of the matrixless finite element method 

[1] using a moving finite element mesh. The mobility of the grid nodes is due to the variable geometry 

of the solution region due to the motion of the melt-crystal interface. The new positions of the nodes of 

the moving mesh were calculated by the model of elastic networks [1], supporting the approximate 

equality of the volumes of the mesh cells. The grid nodes belonging to the moving boundary between 

the melt and the growing crystal moved in accordance with Stefan's conditions. Since the integration of 
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time equations is implicit in diffusion terms, it is stable under the usual Courant condition for convection 

velocity )),1|,max(|/(min 6 ewuht n

k

n

k

n

k
k

n
 where 

n

kh  - the size of the neighborhood of the node k, 

values u and w are velocities of the material and coordinate media. The motion of the interphase 

boundaries is calculated by using the economical Samarsky-Moiseenko pass-through method [2]. The 

position of the border was determined from the condition 

1( , , ) ( , , ) ( , , ) 0mr z t T r z t T C r z t       

The heat generation / absorption during the phase transition was taken into account by the equation  

 0 ( ) //V Tc k T H dTt td ddT       

The delta function was approximated by the expression ( ) (1 | ( ) | / )) / (2.0 )i m mH T T      . The 

verification of the algorithms was performed by calculating the well-known test problems of Val Davis 

[3] and Wheeler [4] on the melt flow in the Czochralski method. The unstructured moving grid was used 

to track the movement of the crystal – melt boundary. Grid nodes are numbered 1( , , 1,..., )i ir z i n , the 

numbers of nodes forming three-node internal cells are determined ( , )E i j  ( 21,...,i n , 1, 2,3j  ) and 

two-node boundary cells ( , )G i j  ( 31,...,i n , 1, 2j  ). The first index of information arrays ( , )E i j  

и ( , )G i j  corresponds to the cell number, the second to the node number in the cell. 

The generalized solution of the problem is determined by the variational equations of the Bubnov-

Galerkin method, that are derived in a known manner from the original differential equations. Each 

moving grid node placed to a central position relative to its neighbors. The grid nodes belonging to the 

moving interface boundaries moved in accordance with Stefan's conditions. To monotonize the artificial 

viscosity the following equations were used: 
2 2

* 0.5(( ) ( ) )*n n n n n n

g gu u w w t        

2 2

* 0.5(( ) ( ) )*n n n n n n

g gD D u u w w t       

2 2

* 0.5(( ) ( ) )*n n n n n n

g gk k u u w w t       

The auxiliary systems of algebraic equations for the nodal values of the desired functions were solved 

by the matrixless conjugate gradient method with preconditioning by using the diagonal approximation 

of the stiffness matrix ([1]). Since the time difference scheme is implicit only for diffusion terms and 

uses physical processes splitting, it is stable under usual Courant restriction for time step. To calculate 

the motion of interphase boundaries, the A.A. Samarsky method of through counting was used [2]. In 

the numerical implementation, the delta function was approximated by the expression 

( ) (1 | ( ) | / )) / (2.0 )i m mH T T      . 

4. The calculation results 
Figure 1 shows the simulation results of the hydrodynamics of the melt and heat transfer during the 

growth of gallium arsenide single crystals by the vertical Bridgman method with an immersed vibrator. 

The computational domain is shown in Figure 1a. The influence of vibrations on the shape of the 

crystallization front of NaNO3 are shown in Figures 1b, and 1c. Vibrations allow making the shape of 

the crystallization front more flat It was assumed that the immersed vibrator or crystal oscillates 

according to the law: with a frequency f and a small amplitude A. The vibration amplitudes were 
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constant with values in the ange from 0 to 400 mkm, and the frequencies were in the range from 0 to 

100 Hz. 
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a)       b)      c) 

Fig. 1. a) Solution area b) Crystallization front without vibrations, c) with vibrations. 

5. Conclusions 

The comparison of the calculations with the test data showed good accuracy of the described 

algorithm for solving the Stefan problem. Using this method, the authors obtained the results 

of modeling the hydrodynamics of melt and heat transfer during the growth of gallium arsenide 

single crystals by the vertical Bridgman method with rotation. 
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